منابع مشابه
Strain engineering of Dirac cones in graphyne
Articles you may be interested in Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains J.
متن کاملManipulation of Dirac Cones in Mechanical Graphene
Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton's law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which ...
متن کاملTopology-optimized dual-polarization Dirac cones
We apply a large-scale computational technique, known as topology optimization, to the inverse design of photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple isotropic dielectric materials, which exhibit dual-polarization Dirac cones. We present photonic crystals of different symmetry types, such as fourfold and sixfold rotational symm...
متن کاملNonlinear A-Dirac Equations
This paper is a study of solutions to nonlinear Dirac equations, in domains in Euclidean space, which are generalizations of the Clifford Laplacian as well as elliptic equations in divergence form. A Caccioppoli estimate is used to prove a global integrability theorem for the image of a solution under the Euclidean Dirac operator. Oscillation spaces for Clifford valued functions are used which ...
متن کاملHeptagraphene: Tunable Dirac Cones in a Graphitic Structure
We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2017
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.96.121406